Multiple imputation using linked proxy outcome data resulted in important bias reduction and efficiency gains: a simulation study
نویسندگان
چکیده
Background When an outcome variable is missing not at random (MNAR: probability of missingness depends on outcome values), estimates of the effect of an exposure on this outcome are often biased. We investigated the extent of this bias and examined whether the bias can be reduced through incorporating proxy outcomes obtained through linkage to administrative data as auxiliary variables in multiple imputation (MI). Methods Using data from the Avon Longitudinal Study of Parents and Children (ALSPAC) we estimated the association between breastfeeding and IQ (continuous outcome), incorporating linked attainment data (proxies for IQ) as auxiliary variables in MI models. Simulation studies explored the impact of varying the proportion of missing data (from 20 to 80%), the correlation between the outcome and its proxy (0.1-0.9), the strength of the missing data mechanism, and having a proxy variable that was incomplete. Results Incorporating a linked proxy for the missing outcome as an auxiliary variable reduced bias and increased efficiency in all scenarios, even when 80% of the outcome was missing. Using an incomplete proxy was similarly beneficial. High correlations (> 0.5) between the outcome and its proxy substantially reduced the missing information. Consistent with this, ALSPAC analysis showed inclusion of a proxy reduced bias and improved efficiency. Gains with additional proxies were modest. Conclusions In longitudinal studies with loss to follow-up, incorporating proxies for this study outcome obtained via linkage to external sources of data as auxiliary variables in MI models can give practically important bias reduction and efficiency gains when the study outcome is MNAR.
منابع مشابه
Using linked educational attainment data to reduce bias due to missing outcome data in estimates of the association between the duration of breastfeeding and IQ at 15 years
BACKGROUND Most epidemiological studies have missing information, leading to reduced power and potential bias. Estimates of exposure-outcome associations will generally be biased if the outcome variable is missing not at random (MNAR). Linkage to administrative data containing a proxy for the missing study outcome allows assessment of whether this outcome is MNAR and the evaluation of bias. We ...
متن کاملAccuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)
Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...
متن کاملAn Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods
Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...
متن کاملکاربرد جای گذاری چندگانه در تحقیقات پزشکی و اپیدمیولوژی
Data missing, which occurs for different reasons, is an unavoidable problem in epidemiological studies. It is quite widespread and, therefore, it is considered as a challenge in research design and data analysis by many methodologists. Complete case analysis is often used in studies with missing data however, this approach may result in inaccurate estimates and inferences due to bias associated...
متن کاملRecovery of information from multiple imputation: a simulation study
UNLABELLED BACKGROUND Multiple imputation is becoming increasingly popular for handling missing data. However, it is often implemented without adequate consideration of whether it offers any advantage over complete case analysis for the research question of interest, or whether potential gains may be offset by bias from a poorly fitting imputation model, particularly as the amount of missing...
متن کامل